Edexcel
 Success through qualifications

Mock Paper Mark Scheme

Advanced Subsidiary/Advanced GCE

General Certificate of Education

Question number	Scheme	Marks
1. (a) (b) (c)	 Labelled axes and <0, > 10 $\mathrm{P}(X \geq 5)=1-\mathrm{P}(X<5)$ 5 and \int or area Δ $\begin{aligned} & =1-\frac{5}{42} \times \frac{1}{2} \times 5 \quad(\text { area of } \Delta) \\ & =1-\frac{25}{84} \quad=\frac{59}{84} \end{aligned}$ Probability it does not break down is $\left(\frac{59}{84}\right)^{2}$ \therefore probability it does break down is $1-\left(\frac{59}{84}\right)^{2}=($ awrt $) 0.507$	B1 B1 B1 B1 M1 M1 A1 (3) M1 A1 (2)
2. (a) (b)	$\begin{aligned} & \mathrm{P}(X<-4.2)=\frac{0.8}{10}=0.08 \\ & \mathrm{P}(\|X\|<1.5)=\frac{3}{10}=0.3 \end{aligned}$	B1 (1) M1 A1 (2)
Question number	Scheme	Marks

\begin{tabular}{|c|c|c|}
\hline (c)

(d) \& \begin{tabular}{l}
$Y=$ no. of lengths with $|X|<1.5 \quad \therefore Y \sim \mathrm{~B}(10,0.3)$
$$
\begin{aligned}
\mathrm{P}(Y>5) & =1-\mathrm{P}(Y \leq 5) \\
& =1-0.9527=0.0473
\end{aligned}
$$

$R=$ no. of lengths of piping rejected
$$
\begin{array}{rlr}
R \sim \mathrm{~B}(60,0.08) \Rightarrow R \approx \sim \operatorname{Po}(4.8) & 4.8 \text { or } 60 \times(a) \\
\begin{array}{rlr}
\mathrm{P}(R \leq 2) & =\mathrm{e}^{-4.8}\left[1+4.8+\frac{(4.8)^{2}}{2!}\right] & \text { Po and } \leq 2, \text { formula } \\
& =17.32 \times \mathrm{e}^{-4.8}=0.1425 \ldots & \text { (accept awrt } 0.143)
\end{array}
\end{array}
$$

 \&

M1

M1

A1 (3)

B1 V

M1, M1 A1 $\sqrt{ }$

(ft for their λ if full expression seen)

A1 cao (5)

(11)
\end{tabular}

\hline | 3. (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | D is continuous |
| :--- |
| Sampling Frame is the list of competitors or their results, e.g. label the results $1-200$ and randomly select 36 of them |
| $X=$ no. of competitors with $A=2$ $X \sim \mathrm{~B}\left(36, \frac{1}{3}\right)$ $X \approx \sim \mathrm{~N}(12,8)$ $\mathrm{P}(X \geq 20) \approx \mathrm{P}\left(Z \geq \frac{19.5-12}{\sqrt{8}}\right)$ $\begin{aligned} & =\mathrm{P}(Z \geq 2.65 \ldots) \\ & =1-0.9960 \quad=0.004 \end{aligned}$ |
| Probability is very low, so assumption of $\mathrm{P}(A=2)=\frac{1}{3}$ is unlikely. (Suggests $\mathrm{P}(A=2)$ might be higher.) | \& | B1 (1) |
| :--- |
| B1 |
| B1 (2) |
| M1 A1 |
| M1, M1 |
| A1 |
| A1 (6) |
| B1, B1 (2) |

\hline
\end{tabular}

Question number	Scheme	Marks
4. (a)	$X=$ no. of vases with defects $\quad X \sim \mathrm{~B}(20,0.15)$	B1
	$\mathrm{P}(X \leq 0)=0.0388$ Use of tables to	M1
	$\mathrm{P}(X \leq 6)=0.9781 \quad \therefore \mathrm{P}(X \geq 7)=0.0219 \quad$ find each tail	M1
	\therefore critical region is $X \leq 0$, or $X \geq 7$	A1, A1 (5)
	Significance level $=\mathrm{P}(X \leq 0)+\mathrm{P}(X \geq 7)=0.0388+0.0219=0.0607$	B1 (1)
(c)	$\mathrm{H}_{0}: \lambda=2.5, \mathrm{H}_{1}: \lambda>2.5 \quad\left[\right.$ or $\left.\mathrm{H}_{0}: \lambda=10, \mathrm{H}_{1}: \lambda>10\right]$	B1, B1
	$Y=$ no. sold in 4 weeks. Under $\mathrm{H}_{0} \quad Y \sim \mathrm{Po}(10)$	M1
	$\mathrm{P}(Y \geq 15)=1-\mathrm{P}(Y \leq 14)=, 1-0.9165=0.0835$	M1, A1
	More than 5% so not significant. Insufficient evidence of an increase in the rate of sales.	A1 (6) (12)

Question number	Scheme	Marks
5. (a)	$\mathrm{F}(1.5)=1 \Rightarrow k\left(2 \times(1.5)^{3}-(1.5)^{4}\right)=1$ i.e. $k\left[2 \times \frac{27}{8}-\frac{81}{16}\right]=1$ i.e. $k\left(\frac{108-81}{16}\right)=1 \quad \therefore k=\frac{16}{27} \quad(*)$	M1 A1 cso
(b)	$\mathrm{P}(T>1)=1-\mathrm{F}(1), \quad=1-\frac{16}{27}(2-1)=\frac{11}{27}$	M1, A1 (2)
(c)	$\mathrm{f}(t)=\mathrm{F}^{\prime}(t)=, \frac{16}{27}\left(6 t^{2}-4 t^{3}\right)$	$\mathrm{M} 1, \mathrm{~A} 1$
	i.e. $\mathrm{f}(t)=\left\{\begin{array}{ll}\frac{32}{27}\left(3 t^{2}-2 t^{3}\right) & 0 \leq t \leq 1.5 \\ 0 & \text { otherwise }\end{array} \quad\right.$ Full definition	B1
(d)	$\mathrm{E}(T)=\int_{0}^{1.5} t \mathrm{f}(t) \mathrm{d} t=\frac{32}{27} \int_{0}^{1.5}\left(3 t^{3}-2 t^{4}\right) \mathrm{d} t \quad \int t \mathrm{f}(t)$	M1
	$\begin{aligned} & =\frac{32}{27}\left[\frac{3 t^{4}}{4}-\frac{2 t^{5}}{5}\right]_{0}^{\frac{3}{2}} \\ & =\frac{32}{27}\left[\left(\frac{243}{64}-\frac{2}{5} \times \frac{243}{32}\right)-(0)\right] \end{aligned}$	A1
	$\begin{equation*} =\frac{9}{2}-\frac{18}{5}=0.9 \tag{*} \end{equation*}$	A1 cso (3)
(e)	$\mathrm{F}(\mathrm{E}(T))=\frac{16}{27}\left(2 \times 0.9^{3}-0.9^{4}\right)=0.4752 \quad$ evidence seen	B1
(f)	$\mathrm{P}(T>1 \mid T>0.9)=\frac{\mathrm{P}(T>1)}{P(T>0.9)},=\frac{\operatorname{part}(b)}{1-\operatorname{part}(e)},=0.7763 \ldots$	M1, M1,
	accept awrt 0.776	A1 (3)
		(14)

